Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Nat Commun ; 15(1): 2908, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575616

RESUMO

Staging amyloid-beta (Aß) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aß pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aß ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aß-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aß therapies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Biomarcadores/líquido cefalorraquidiano , Atrofia
2.
Alzheimers Dement (N Y) ; 10(2): e12460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617114

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is increasing in the Caribbean, especially for persons of African ancestry (PAA) and women. However, studies have mostly utilized surveys without AD biomarkers. METHODS: In the Tobago Health Study (n = 309; 109 women, mean age 70.3 ± 6.6), we assessed sex differences and risk factors for serum levels of phosphorylated tau-181 (p-tau181), amyloid-beta (Aß)42/40 ratio, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). Blood samples were from 2010 to 2013 for men and from 2019 to 2023 for women. RESULTS: Women were more obese, hypertensive, and sedentary but reported less smoking and alcohol use than men (age-adjusted p < 0.04). Compared to men, women had worse levels of AD biomarkers, with higher p-tau181 and lower Aß42/40, independent of covariates (p < 0.001). In sex-stratified analyses, higher p-tau181 was associated with older age in women and with hypertension in men. GFAP and NfL did not differ by sex. DISCUSSION: Women had worse AD biomarkers than men, unexplained by age, cardiometabolic diseases, or lifestyle. Studying risk factors for AD in PAA is warranted, especially for women earlier in life.

3.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562890

RESUMO

BACKGROUND: Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS: One hundred and fifty-one participants with normal cognition (n=76) or mild cognitive impairment (n=75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Linear regression and ROC analyses were used to address the associations of interest. RESULTS: Higher GFAP levels were associated with NPS at baseline (ß=0.23, p=.008). Higher NfL and GFAP levels were associated with the presence of NPS at follow-up (ß=0.29, p=.007 and ß=0.28, p=.007, respectively) and with an increase in the NPI-Q severity score over time (ß=0.23, p=.035 and ß=0.27, p=.011, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.73 to 0.84, p=.007) and AD pathology (AUC 0.79 to 0.86, p=.006), but not of cognitive decline (AUC 0.79 to 0.84, p=.068). CONCLUSION: Plasma GFAP is associated with NPS while NfL and GFAP are both associated with future NPS and NPS severity. Considering the presence of NPS along with blood-based AD-biomarkers may improve diagnosis and prediction of clinical progression of NPS and inform clinical decision-making in non-demented older people.

4.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38429551

RESUMO

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano
5.
Nat Commun ; 15(1): 2615, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521766

RESUMO

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Neuropatologia , Plasma , Emaranhados Neurofibrilares , Autopsia , Proteínas tau , Biomarcadores , Peptídeos beta-Amiloides
6.
medRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496591

RESUMO

INTRODUCTION: The reliability of plasma Alzheimer's disease (AD) biomarkers can be compromised by protease-induced degradation. This limits the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). This study conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. METHODS: We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 hours. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0h or 24h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA or P100 tubes, followed by storage at RT for 0h or 24h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. RESULTS: Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improved the stability of Aß42 and Aß40 across all approaches. Additionally, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. CONCLUSION: Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß ratio for IP-MS assay. This has crucial implications for preanalytical procedures, particularly in resource-limited settings.

7.
Alzheimers Dement ; 20(4): 2894-2905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520322

RESUMO

INTRODUCTION: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers. METHODS: A homogeneous (single-antibody) immunoassay was developed using a novel anti-tau monoclonal antibody and validated with recombinant and brain tissue-derived tau. RESULTS: The assay signals were concentration dependent for recombinant tau aggregates in solution but not monomers, and recognized peptides within, but not outside, the aggregation-prone microtubule binding region. The signals in inferior and middle frontal cortical tissue homogenates increased with neuropathologically determined Braak staging, and were higher in insoluble than soluble homogenized brain fractions. Autopsy-verified AD gave stronger signals than other neurodegenerative diseases. DISCUSSION: The quantitative oligomer/soluble aggregate-specific assay can identify soluble tau aggregates, including oligomers, from monomers in human and in vitro biospecimens. HIGHLIGHTS: The aggregation of tau to form fibrils and neurofibrillary tangles is a key feature of Alzheimer's disease. However, biochemical assays for the quantification of oligomers/soluble aggregated forms of tau are lacking. We developed a new assay that preferentially binds to soluble tau aggregates, including oligomers and fibrils, versus monomers. The assay signal increased corresponding to the total protein content, Braak staging, and insolubility of the sequentially homogenized brain tissue fractions in an autopsy-verified cohort. The assay recognized tau peptides containing the microtubule binding region but not those covering the N- or C-terminal regions only.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Emaranhados Neurofibrilares , Imunoensaio , Peptídeos/metabolismo
8.
Neurobiol Aging ; 136: 88-98, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335912

RESUMO

Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-ß1-42 (Aß1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF Aß1-42 or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Idoso , Feminino , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Cognição/fisiologia , Progressão da Doença
9.
Alzheimers Dement ; 20(4): 3114-3115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328965

RESUMO

Alzheimer's disease (AD) represents a growing global health challenge, necessitating accurate and reliable diagnostic methodologies for timely intervention and management. Immunoassays, specifically designed to detect biomarkers associated with AD pathology, have emerged as pivotal tools in diagnostic development. Understanding of the established protocols ensures assay sensitivity, specificity, and reproducibility, thereby enhancing the clinical utility of these diagnostic tools. Here, we explore the considerations in immunoassay development, focusing on phosphorylated tau217 assays. Ultimately, a clear understanding of immunoassay development is paramount in advancing the precision and reliability of AD diagnostics, contributing to early detection, improved patient outcomes, and advancements in therapeutic interventions.


Assuntos
Doença de Alzheimer , Humanos , Reprodutibilidade dos Testes , Doença de Alzheimer/diagnóstico , Plasma , Biomarcadores , Proteínas tau , Peptídeos beta-Amiloides
10.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185677

RESUMO

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Proteínas Amiloidogênicas , Imunoensaio , Espectrometria de Massas , Biomarcadores
11.
Alzheimers Dement ; 20(1): 745-751, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858957

RESUMO

INTRODUCTION: Rapidly progressive dementias (RPDs) are a group of neurological disorders characterized by a rapid cognitive decline. The diagnostic value of blood-based biomarkers for Alzheimer's disease (AD) in RPD has not been fully explored. METHODS: We measured plasma brain-derived tau (BD-tau) and p-tau181 in 11 controls, 15 AD patients, and 33 with RPD, of which 19 were Creutzfeldt-Jakob disease (CJD). RESULTS: Plasma BD-tau differentiated AD from RPD and controls (p = 0.002 and p = 0.03, respectively), while plasma and cerebrospinal fluid (CSF) p-tau181 distinguished AD from RPD (p < 0.001) but not controls from RPD (p > 0.05). The correlation of CSF t-tau with plasma BD-tau was stronger (r = 0.78, p < 0.001) than the correlation of CSF and plasma p-tau181 (r = 0.26, p = 0.04). The ratio BD-tau/p-tau181 performed equivalently to the CSF t-tau/p-tau181 ratio, differentiating AD from CJD (p < 0.0001). DISCUSSION: Plasma BD-tau and p-tau181 mimic their corresponding cerebrospinal fluid (CSF) markers. P-tau significantly increased in AD but not in RPD. Plasma BD-tau, like CSF t-tau, increases according to neurodegeneration intensity.


Assuntos
Doença de Alzheimer , Síndrome de Creutzfeldt-Jakob , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Encéfalo , Biomarcadores/líquido cefalorraquidiano , Diagnóstico Diferencial , Peptídeos beta-Amiloides/líquido cefalorraquidiano
12.
Alzheimers Dement ; 20(2): 1239-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975513

RESUMO

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among individuals with mild cognitive changes and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma phosphorylated tau 217 (p-tau217) is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (University of Gothenburg [UGOT] p-tau217) in four independent cohorts (n = 308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired (CU) and mild cognitively impaired (MCI) participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (Barcelonaßeta Brain Research Center's Alzheimer's At-Risk Cohort [ß-AARC]). RESULTS: UGOT p-tau217 showed high accuracy (area under the curve [AUC] = 0.80-0.91) identifying amyloid beta (Aß) pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC = 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Encéfalo , Biomarcadores/líquido cefalorraquidiano
13.
J Neurol ; 271(3): 1297-1310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950758

RESUMO

Plasma neurofilament light chain (NfL) is a promising biomarker of axonal damage for the diagnosis of neurodegenerative diseases. Phosphorylated neurofilament heavy chain (pNfH) has demonstrated its value in motor neuron diseases diagnosis, but has less been explored for dementia diagnosis. In a cross-sectional study, we compared cerebrospinal fluid (CSF) and plasma NfL and pNfH levels in n = 188 patients from Lariboisière Hospital, Paris, France, including AD patients at mild cognitive impairment stage (AD-MCI, n = 36) and dementia stage (n = 64), non-AD MCI (n = 38), non-AD dementia (n = 28) patients and control subjects (n = 22). Plasma NfL, plasma and CSF pNfH levels were measured using Simoa and CSF NfL using ELISA. The correlation between CSF and plasma levels was stronger for NfL than pNfH (rho = 0.77 and rho = 0.52, respectively). All neurofilament markers were increased in AD-MCI, AD dementia and non-AD dementia groups compared with controls. CSF NfL, CSF pNfH and plasma NfL showed high performance to discriminate AD at both MCI and dementia stages from control subjects [AUC (area under the curve) = 0.82-0.91]. Plasma pNfH displayed overall lower AUCs for discrimination between groups compared with CSF pNfH. Neurofilament markers showed similar moderate association with cognition. NfL levels displayed significant association with mediotemporal lobe atrophy and white matter lesions in the AD group. Our results suggest that CSF NfL and pNfH as well as plasma NfL levels display equivalent performance in both positive and differential AD diagnosis in memory clinic settings. In contrast to motoneuron disorders, plasma pNfH did not demonstrate added value as compared with plasma NfL.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença dos Neurônios Motores , Doenças do Sistema Nervoso , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Estudos Transversais , Proteínas de Neurofilamentos , Proteínas tau/líquido cefalorraquidiano
14.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37920945

RESUMO

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Assuntos
Doença de Alzheimer , Humanos , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Biomarcadores , Tomografia por Emissão de Pósitrons
15.
Alzheimers Dement ; 20(2): 1284-1297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985230

RESUMO

INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aß42, Aß40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10 weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI ) and between-subject (CVG ) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG . Aß42/Aß40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aß42/Aß40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Proteína Glial Fibrilar Ácida , Biomarcadores , Progressão da Doença , Proteínas tau
16.
Am J Obstet Gynecol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37939982

RESUMO

BACKGROUND: Identifying risk factors for Alzheimer disease in women is important as women compose two-thirds of individuals with Alzheimer disease. Previous work links vasomotor symptoms, the cardinal menopausal symptom, with poor memory performance and alterations in brain structure, function, and connectivity. These associations are evident when vasomotor symptoms are monitored objectively with ambulatory skin conductance monitors. OBJECTIVE: This study aimed to determine whether vasomotor symptoms are associated with Alzheimer disease biomarkers. STUDY DESIGN: Between 2017 and 2020, the MsBrain study enrolled 274 community-dwelling women aged 45 to 67 years who had a uterus and at least 1 ovary and were late perimenopausal or postmenopausal status. The key exclusion criteria included neurologic disorder, surgical menopause, and recent use of hormonal or nonhormonal vasomotor symptom treatment. Women underwent 24 hours of ambulatory skin conductance monitoring to assess vasomotor symptoms. Plasma concentrations of Alzheimer disease biomarkers, including amyloid ß 42-to-amyloid ß 40 ratio, phosphorylated tau (181 and 231), glial fibrillary acidic protein, and neurofilament light, were measured using a single-molecule array (Simoa) technology. Associations between vasomotor symptoms and Alzheimer disease biomarkers were assessed via linear regression models adjusted for age, race and ethnicity, education, body mass index, and apolipoprotein E4 status. Additional models adjusted for estradiol and sleep. RESULTS: A total of 248 (mean age, 59.06 years; 81% White; 99% postmenopausal status) of enrolled MsBrain participants contributed data. Objectively assessed vasomotor symptoms occurring during sleep were associated with significantly lower amyloid ß 42/amyloid ß 40, (beta, -.0010 [standard error, .0004]; P=.018; multivariable), suggestive of greater brain amyloid ß pathology. The findings remained significant after additional adjustments for estradiol and sleep. CONCLUSION: Nighttime vasomotor symptoms may be a marker of women at risk of Alzheimer disease. It is yet unknown if these associations are causal.

17.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001539

RESUMO

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Gliose , Proteínas tau/metabolismo , Proteínas 14-3-3
18.
JAMA Netw Open ; 6(11): e2345175, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010651

RESUMO

Importance: Neuropsychiatric symptoms are commonly encountered and are highly debilitating in patients with Alzheimer disease. Understanding their underpinnings has implications for identifying biomarkers and treatment for these symptoms. Objective: To evaluate whether glial markers are associated with neuropsychiatric symptoms in individuals across the Alzheimer disease continuum. Design, Setting, and Participants: This cross-sectional study was conducted from January to June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University, Canada. Recruitment was based on referrals of individuals from the community or from outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance imaging, being currently enrolled in other studies, and having inadequately treated systemic conditions. Main Outcomes and Measures: All individuals underwent assessment for neuropsychiatric symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation ([11C]PBR28 PET), amyloid-ß ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET). Results: Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-ß PET positivity was present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals (79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal, and parietal cortices (ß = 7.37; 95% CI, 1.34-13.41; P = .01). A leave-one-out approach revealed that irritability was the NPI-Q domain most closely associated with the presence of brain microglial activation (ß = 6.86; 95% CI, 1.77-11.95; P = .008). Furthermore, we found that microglia-associated irritability was associated with study partner burden measured by NPI-Q distress score (ß = 5.72; 95% CI, 0.33-11.10; P = .03). Conclusions and Relevance: In this cross-sectional study of 109 individuals across the AD continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-ß- and microglia-targeted therapies could have an impact on relieving these symptoms.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Idoso , Doença de Alzheimer/patologia , Microglia/patologia , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Biomarcadores
19.
medRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38014197

RESUMO

The evolution of infarcts varies widely among patients with acute ischemic stroke (IS) and influences treatment decisions. Neuroimaging is not applicable for frequent monitoring and there is no blood-based biomarker to track ongoing brain injury in acute IS. Here, we examined the utility of plasma brain-derived tau (BD-tau) as a biomarker for brain injury in acute IS. We conducted the prospective, observational Precision Medicine in Stroke [PROMISE] study with serial blood sampling upon hospital admission and at days 2, 3, and 7 in patients with acute ischemic stroke (IS) and for comparison, in patients with stroke mimics (SM). We determined the temporal course of plasma BD-tau, its relation to infarct size and admission imaging-based metrics of brain injury, and its value to predict functional outcome. Upon admission (median time-from-onset, 4.4h), BD-tau levels in IS patients correlated with ASPECTS (ρ=-0.21, P<.0001) and were predictive of final infarct volume (ρ=0.26, P<.0001). In contrast to SM patients, BD-tau levels in IS patients increased from admission (median, 2.9 pg/ml [IQR, 1.8-4.8]) to day 2 (median time-from-onset, 22.7h; median BD-tau, 5.0 pg/ml [IQR, 2.6-10.3]; P<.0001). The rate of change of BD-tau from admission to day 2 was significantly associated with collateral supply (R2=0.10, P<.0001) and infarct progression (ρ=0.58, P<.0001). At day 2, BD-tau was predictive of final infarct volume (ρ=0.59, P<.0001) and showed superior value for predicting the 90-day mRS score compared with final infarct volume. In conclusion, in 502 patients with acute IS, plasma BD-tau was associated with imaging-based metrics of brain injury upon admission, increased within the first 24 hours in correlation with infarct progression, and at 24 hours was superior to final infarct volume in predicting 90-day functional outcome. Further research is needed to determine whether BD-tau assessments can inform decision-making in stroke care.

20.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873312

RESUMO

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among cognitively unimpaired individuals and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma p-tau217 is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (UGOT p-tau217) in four independent cohorts (n=308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (ß-AARC). RESULTS: UGOT p-tau217 showed high accuracy (AUC= 0.80-0.91) identifying Aß pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC= 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...